 Email: info@hdfiberglass.com                                Whatsapp: +86 15200033566                                                       Catalogs | Blogs
You are here: Home » What is Alkali Resistant Glass Fiber?
What is Alkali Resistant Glass Fiber?
August 25, 2022
The majority of artisan concrete projects, including concrete countertops, architectural panels, concrete vanities, and concrete furniture pieces often achieve their primary reinforcement using fiber technology. Understanding which fibers are functional as primary reinforcement, and the reasoning behind which fiber to use in a given situation, is helpful in achieving a well reinforced object.

Three of the reinforcing fibers materials that are the most widely used are Alkali Resistant Glass Fibers, PVA Fibers, and AC50 Acrylic Fibers. There are many other fibers that are available, including nylon and polypropylene, but these are typically used for shrinkage control and secondary reinforcement, not as a primary reinforcement. For now we will focus on the benefits and drawbacks of using Alkali Resistant Glass Fibers.
What is Alkali Resistant Glass Fiber?
Alkali Resistant (AR) Glass Fiber is glass fiber with added zirconium oxide to help resist attack from alkalinity. This is an important element of these fibers, as concrete is a very alkaline environment. Normal fiberglass (e-glass) degrades in concrete due to the aggressive alkaline environment. AR fibers have been widely used in the concrete industry since the 1970's. Glass fiber allows for thinner and lighter weight concrete. Steel reinforcement is no longer necessary. AR Glass Fiber is the primary reinforcement used in GFRC (Glass Fiber Reinforced Concrete).

AR Fiber is produced in bundles, and held together with a resin called 'sizing'. A bundle will have varying numbers of filaments, depending on the intended application. The bundles work to allow a certain amount of ductility to the concrete, while also producing the necessary tensile strength for many applications. The tensile strength of the glass fiber is greater than that of steel, and the fiber is significantly less 'elastic' than concrete. This means that once the concrete is forced to failure, the glass is still holding the matrix together, providing strength and ductility. Since the glass does not stretch and elongate, the failure of the fiber is sudden and catastrophic, as opposed to the PVA fibers that will stretch prior to failure.